

Pacific Northaesaloging and Quantifying **Value Streams** from **Non-Powered** Dam Conversion

May 23, 2024

Kyle Wilson Sarah Barrows Mark Weimar Rajiv Prasad



PNNL is operated by Battelle for the U.S. Department of Energy



## Background

- Hydropower is a key resource in the United States' renewable energy transition
- Only 3% of existing dams in the United States currently generate electricity
- There is perception that hydro development has long payback periods
- In addition to electricity sale, powering some non-powered dams (NPDs) may unlock new value streams that could increase the feasibility of retrofit projects



### **Key Outcomes**

- We catalog these value streams
  - Specify the stakeholder affected
  - Identify quantification methodologies
  - The intended purpose is to enable conversations between key stakeholders and elucidate pathways to remuneration
- Demonstrate the quantification of some value streams for a selected NPD site
  - Recreation
  - Fish habitat







- Each row in the catalog is a value stream that can results in positive, negative, or neutral impact
- The catalog distinguishes retrofit value streams as community, environment, or grid/financial impacts
- This is done to map to the sectors or stakeholders who may be relevant in discussing these potential value streams

## **Columns in Catalog**

- Category
  - community, environment, or grid/financial
- Power/Non-Power
- Use/Non-Use
- Owner-operator/System impacts
- Remuneration to owner-operator
- Affected entities
- Impact
- Description
- Metrics
- Valuation approaches
- Difficulty to undertake
- **Relevant literature**



| Category       | Value stream                                                        | Power/Non-<br>Power | Use/Non-<br>use | Owner-<br>Operator/<br>System<br>Impacts | Remuner-<br>ation to<br>Owner-<br>Operator                         | Affected<br>Entities                          | Positive or<br>Negative Impact | Description                                                                                                                                                                                                                                                                                                         | Metrics                                                                                                                                                                                  | Valuation Approaches                                                         | Difficulty to<br>Undertake                                                                                             |
|----------------|---------------------------------------------------------------------|---------------------|-----------------|------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Community      | Improved energy<br>reliability                                      | Power               | Use             | NA                                       | No                                                                 | Industry/comm<br>unity/utility/<br>RTO or ISO | Positive                       | More reliable power for local<br>industries may allow for increased<br>economic growth for the company.                                                                                                                                                                                                             | Probability, duration,<br>frequency, time of outages<br>by customer group (SAIDI,<br>SAIFI, CAIDI, CAIFI, ASAI);<br>Customer-level reliability<br>metrics (CEMI, CEMSMI,<br>CEMM, CELID) | Stated preference;<br>market-based<br>methods, regional<br>economic modeling | If use existing<br>tools (e.g., ICE<br>calculator), fairly<br>simple. If pursue<br>independently,<br>fairly difficult. |
| Community      | Local economic<br>development                                       | Non-power           | Use             | NA                                       | No                                                                 | Local economy                                 | Positive                       | Potential job creation, including<br>temporary construction & permanent<br>operational/maintenance jobs and<br>related spending. Potential to bring<br>additional industry to local<br>communities. Local (dam community)<br>job creation likely less with simple<br>retrofits in comparison to hybrid<br>projects. | Number of jobs created,<br>regional impacts to GDP<br>(direct, indirect, induced<br>effects)                                                                                             | Input-output analysis,<br>CGE models                                         | Medium - data<br>usually purchased<br>from IMPLAN                                                                      |
| Environment    | Recreation                                                          | Non-power           | Use             | NA                                       | No                                                                 | Residents,<br>recreational<br>users           | Mixed                          | Access to river, including for<br>recreational uses, may be impacted.<br>(Access impacts for local recreational<br>use could be positive if dam<br>redevelopment includes additional<br>access points.)                                                                                                             | Number of trips per year;<br>Value attributed to<br>recreational activities;<br>willingness to pay for access<br>to recreational areas                                                   | Travel cost method;<br>stated preference                                     | Easy if there is<br>data available on<br>recreational<br>activity at the site                                          |
| Environment    | Reduction of emissions                                              | Non-power           | Use             | NA                                       | No                                                                 | Society/local<br>community                    | Positive                       | If replacing carbon-emitting<br>generation, can avoid emissions.<br>Societal costs associated with<br>emissions can be reduced. Local air<br>quality may also potentially be<br>improved.                                                                                                                           | Tons CO2eq per year; value<br>of social cost of carbon                                                                                                                                   | Market observation                                                           | Relatively easy                                                                                                        |
| Grid/Financial | Inertial reponse                                                    | Power               | Use             | System                                   | No                                                                 | Utility/PMA/ISO<br>or RTO                     | Positive                       | Sub-second response to transfer<br>kinetic energy into electrical energy.<br>Enabled by batteries. Not a market<br>product - avoided costs can be<br>calculated.                                                                                                                                                    | Rate of change of frequency                                                                                                                                                              | v Dynamic simulation                                                         | Simulation can be<br>quite complex                                                                                     |
| Grid/Financial | Increased grid flexibility<br>(e.g., ramping and load<br>following) | Power               | Use             | System                                   | No -<br>Ramping<br>and load<br>following<br>compensat<br>ed though | Dam owner or<br>operator/utility/<br>PMA      | ' Positive                     | Generation can potentially allow<br>flexibility with other resources and<br>grid operations. Utilities may save<br>costs which could be passed through.<br>PMAs can offer contracts for short-<br>term sales and purchases, as well as<br>seasonal power sales.                                                     | Periods of flexibility deficit,<br>expected unserved<br>ramping, insufficient ramp<br>resource expectation, cost<br>and/or price volatility                                              | Dynamic simulation                                                           | Simulation can be<br>quite complex                                                                                     |



## **Grid/Financial Value Streams**

- Hydropower can provide many services to the grid
- Some of these can be remunerated through market participation
- Some may require negotiating a bilateral contract
- Some such as reduced curtailment provided avoided costs to other parts of the grid
- Two value streams are costs

### **Grid/Financial Value Streams**

### **Benefits**

Energy revenue/savings Price arbitrage Capacity Regulation Blackstart Transmission upgrade deferral and congestion relief Distribution upgrade deferral Primary frequency response Voltage support Reserves Inertia Grid flexibility **Reduced curtailment Renewable Energy Credits** 

### Costs

**Operating costs Capital costs** 



## **Community Value Streams**

- None of these value streams are typically remunerated to the dam owner or operator
- Affect the populace near the site
- Some of these value streams are widely utilized for regional economic value
  - tax revenue, economic development
- Others have been identified as important metrics for equity analyses, but are rarely monetized
  - energy sovereignty, reduced energy burden
- Reliability and resilience are measured using a variety of metrics
  - SAIDI, SAIFI etc.

### **Community Value Streams**

### **Benefits**

Reliability Enabling industry **Property value** Tax revenue **Economic development** Renewable goals Energy sovereignty Reduced energy burden Resilience



### **Environmental Value Streams**

- Environmental value streams are not remunerated to the dam owner or operator
  - Important to the site's licensing and permitting.
- Many of these value streams have mixed impacts, dependent on site characteristics
  - Value stream could be neutral, negative, or positive in some circumstances.
  - Powering a dam may inhibit fish passage, but including new fish passage equipment as part of a retrofit project would improve passage

### **Environmental Value Streams**

### **Benefits**

**Emissions reduction Reservoir existence** 

### **Mixed impact**

Fish passage **Recreation** Flood risk **Fisheries** Water availability Water temperature Flows Forebay elevation Dissolved oxygen Nutrification/eutrophication **Erosion/turbidity** Stream/river existence



## **Quantifying Value Streams**

- •Quantification methodologies vary depending on the value stream
- •Quantifying the value stream requires monetization of the impact
- •Value streams that have impacts to power systems often have methods of measurement, even if they do not exist as a market product
- •Several non-market valuation methods have been developed to understand the value of environmental goods and services:
  - travel cost models, hedonic property value methods, stated preference surveys, and resource equivalency analysis

•Community value streams can be quantified through methods like input-output analysis, computable general equilibrium models, stated preference, and market-based methods



## Case Study: Site Description and Background

- We demonstrate the quantification of two value streams, recreation and fish habitat, at a proposed retrofit in Pennsylvania the Allegheny Lock and Dam No. 2
- Rye Development has proposed a retrofit to incorporate 8.46 MW of hydropower generation at the site
- Project plans include the addition of:
  - Restroom facilities
  - Fishing platform with a ramp and walkway leading to it
  - Paved access and parking for eight vehicles





## **Case Study – Recreational Value**

- We use the benefit transfer (BT) method to quantify the value of the potential recreational improvements
- BT uses values from a study at a different location and applies them to the current setting
- First, we estimated the number of annual visitors to the site based on surveys conducted as part of the FERC licensing process
- We use a meta-analysis value transfer for the total value of the current recreation in the area using Rosenberger (2016)
- Fishing, hiking, motor boating, and general recreation
- We use a single study transfer for the change in value from the proposed additions (Timmins and Murdock, 2007)
  - Addition of restroom, paved road and the parking lot



### **Case Study - Recreation Value Results**







## **Case Study – Fish Habitat Value**

- FERC licensing documentation estimated changes in weighted useable area
- We use BT method to estimate monetary value of this fish habitat
- Johnston & Ramachandran (2014) \$0.025 per household per acre
- Used an estimate of 183,000 households that are within the city of Pittsburgh



### **Case Study – Fish Habitat Results**





- We are working on a site-specific NPD feasibility assessment tool that will include several modules
  - Site viability
  - Grid integration
  - Techno-economic analysis
  - Community benefits
- Results from this project are being developed to include in the community benefits module



## **Community Benefits Module**

- Users can select a prospective dam
- Tool will combine many data sources and provide information about a potential retrofit project
- Users will be able to enter input data
- Tool will compute monetary value for these value streams
  - Recreation
  - Fish Habitat
  - Grid Resilience (Reduction in frequency or duration of outages)
  - Local economic development



### Conclusion

- The catalog can be used to identify potential value streams
- Methods outlined can provide a starting point for quantifying values
- Case study using benefit transfer demonstrates that values can often be quantifying without requiring the cost of an original study.

### Report and catalog



Link to press release



### alues In often be



# Thank you





- Johnston, R., Schultz, E., Segerson, K., Besedin, E., & Ramachandran, M. (2012). Enhancing the Content Validity of Stated Preference Valuation: The Structure and Function of Ecological Indicators. Land Economics, 88. doi:10.3368/le.88.1.102
- Johnston, R. J., & Ramachandran, M. (2014). Modeling Spatial Patchiness and Hot Spots in Stated Preference Willingness to Pay. Environmental and Resource Economics, 59(3), 363-387. doi:10.1007/s10640-013-9731-2
- Rosenberger, Randall S. 2016. Recreation Use Values Database Summary. Corvallis, OR: Oregon State University, College of Forestry. [http://recvaluation.forestry.oregonstate.edu/]
- Timmins, C., & Murdock, J. (2007). A revealed preference approach to the measurement of congestion in travel cost models. Journal of Environmental Economics and management, 53(2), 230-249. DOI: https://doi.org/10.1016/j.jeem.2006.08.002