The Economic Impacts of Wildfires on Agricultural Land Markets

Authors: Kenneth Annan; Daniel Bigelow Applied Economics, Oregon State University

> 2025 PNREC Conference May 20, 2025

э

Wildfires in the US

• Economic and environmental consequences for both agricultural and forest regions

Wildfires in the US

- Economic and environmental consequences for both agricultural and forest regions
- The average annual acreage burned by wildfires in the US has increased substantially (Hoover and Hanson, 2023)
 - Pacific states account for the highest acreage burned
 - The average yearly acres burned in the US increased by 125% in the 2000–2016 period compared to 1983–1999 (NIFC, 2024)

<ロ> <部> < 部> < き> < き> < き</p>

Wildfires in the US

- Economic and environmental consequences for both agricultural and forest regions
- The average annual acreage burned by wildfires in the US has increased substantially (Hoover and Hanson, 2023)
 - Pacific states account for the highest acreage burned
 - The average yearly acres burned in the US increased by 125% in the 2000–2016 period compared to 1983–1999 (NIFC, 2024)
- The impacts on agricultural land prices have received less attention than other land uses (Huang and Skidmore, 2024; Wang and Lewis, 2024)

Research Question

- How do wildfires affect agricultural land prices?
 - Examine how fire-risk perceptions, measured by proximity to wildfire, affect observed parcel-level agricultural land prices
 - Estimate the effects for nearby fires using a difference-in-differences (DD) research design

Research Question

- How do wildfires affect agricultural land prices?
 - Examine how fire-risk perceptions, measured by proximity to wildfire, affect observed parcel-level agricultural land prices
 - Estimate the effects for nearby fires using a difference-in-differences (DD) research design
- Preview of what we find
 - Wildfires have led to a reduction of land values in Oregon
 - The magnitude of the reduction was 25 to 40%
 - Oregon agricultural properties sold lately following a wildfire had an average decline of \$700-1,120/acre

Research Hypothesis

- Wildfires may have both direct and indirect effects
 - Changes in risk perceptions from nearby fires

Research Hypothesis

- Wildfires may have both direct and indirect effects
 - Changes in risk perceptions from nearby fires
- Agricultural land values reflect both land productivity and expectations of future land production potential (Plantinga et al., 2002)

Research Hypothesis

- Wildfires may have both direct and indirect effects
 - Changes in risk perceptions from nearby fires
- Agricultural land values reflect both land productivity and expectations of future land production potential (Plantinga et al., 2002)
- Our general working hypothesis is that agricultural land prices should decrease in response to recent nearby wildfires

• Transactions data for agricultural sales from 2000 to 2023 were purchased from CoreLogic

- Transactions data for agricultural sales from 2000 to 2023 were purchased from CoreLogic
- Wildfire data from the Monitoring Trends in Burn Severity (MTBS), which maps the date, size, and boundary of each fire in the US

- Transactions data for agricultural sales from 2000 to 2023 were purchased from CoreLogic
- Wildfire data from the Monitoring Trends in Burn Severity (MTBS), which maps the date, size, and boundary of each fire in the US
 - Link transactions data using GIS layer to get agricultural sales that are affected by fires

<ロ> <部> < 部> < き> < き> < き</p>

- Transactions data for agricultural sales from 2000 to 2023 were purchased from CoreLogic
- Wildfire data from the Monitoring Trends in Burn Severity (MTBS), which maps the date, size, and boundary of each fire in the US
 - Link transactions data using GIS layer to get agricultural sales that are affected by fires
- Climate variables (temperature, precipitation) come from Oregon state University (PRISM)

- Transactions data for agricultural sales from 2000 to 2023 were purchased from CoreLogic
- Wildfire data from the Monitoring Trends in Burn Severity (MTBS), which maps the date, size, and boundary of each fire in the US
 - Link transactions data using GIS layer to get agricultural sales that are affected by fires
- Climate variables (temperature, precipitation) come from Oregon state University (PRISM)
- Soil classes from the Oregon Natural Resource Conservative Service (NRCS)

- Transactions data for agricultural sales from 2000 to 2023 were purchased from CoreLogic
- Wildfire data from the Monitoring Trends in Burn Severity (MTBS), which maps the date, size, and boundary of each fire in the US
 - Link transactions data using GIS layer to get agricultural sales that are affected by fires
- Climate variables (temperature, precipitation) come from Oregon state University (PRISM)
- Soil classes from the Oregon Natural Resource Conservative Service (NRCS)
- Other administrative boundary are taking from Oregon's Authoritative Geospatial Repository (OAGR)

• Create a "stacked" fire by parcel panel

- Create a "stacked" fire by parcel panel
- For each of the 1,229 nearest fires and each year over 1984–2021

<ロ> <部> < 部> < き> < き> <</p>

2

- Create a "stacked" fire by parcel panel
- For each of the 1,229 nearest fires and each year over 1984–2021
 - Restrict to all parcels within 10km and sold five years before and after fire

<ロ> <部> < き> < き> <</p>

э.

- Create a "stacked" fire by parcel panel
- For each of the 1,229 nearest fires and each year over 1984–2021
 - Restrict to all parcels within 10km and sold five years before and after fire
- Construct a fire-specific dataset so that the fire level serves as the unit of the treatment and the primary source of variation

• Determine the fire treatment time window and spatial bandwidth for the treatment and control groups

- Determine the fire treatment time window and spatial bandwidth for the treatment and control groups
 - All parcels in within 2km spatial bandwidth threshold is the treatment group, otherwise for the control group

- Determine the fire treatment time window and spatial bandwidth for the treatment and control groups
 - All parcels in within 2km spatial bandwidth threshold is the treatment group, otherwise for the control group
 - Ensure that we have pre-/post and treatment-/control parcels within the 2km treatment bandwidth for each fire ID

- Determine the fire treatment time window and spatial bandwidth for the treatment and control groups
 - All parcels in within 2km spatial bandwidth threshold is the treatment group, otherwise for the control group
 - Ensure that we have pre-/post and treatment-/control parcels within the 2km treatment bandwidth for each fire ID
 - Leaving a total of 3,866 observations with 494 unique fires between 2000 and 2023 for the final analysis

Spatial Thresholds

 $\begin{array}{l} \textbf{A} - \text{Treatment zone (within 2km)} \\ \textbf{B} - \text{Control for 10km buffer} \end{array}$

Wildfire impact zones illustrating 2km treatment and 10km buffer

Empirical Model Specification

• Using a pooled cross sectional data, the DD model will be specified as follows:

$$\begin{split} & \textit{In}(Y_i) = \beta_1 \textit{Treat}_{j(i)} + \beta_2 \textit{Post}_i + \beta_3 \textit{Treat}_{j(i)} \times \textit{Post}_i + \phi' \textbf{X}_i \\ & +\mu_{j(i)} + \gamma_{t(i)} + \varepsilon_i \\ & \textit{Treat}_j(i) = \left\{ \begin{array}{c} 1 \text{ if parcels within the treatment area} \\ & 0 \text{ otherwise} \end{array} \right. \\ & \textit{Post}_i = \left\{ \begin{array}{c} 1 \text{ if the parcel was sold afer fire} \\ & 0 \text{ otherwise} \end{array} \right. \end{split}$$

Empirical Model Specification

 Using a pooled cross sectional data, the DD model will be specified as follows:

$$\begin{aligned} \ln(\mathbf{Y}_i) &= \beta_1 \operatorname{Treat}_{j(i)} + \beta_2 \operatorname{Post}_i + \beta_3 \operatorname{Treat}_{j(i)} \times \operatorname{Post}_i + \phi' \mathbf{X}_i \\ &+ \mu_{j(i)} + \gamma_{t(i)} + \varepsilon_i \\ & \operatorname{Treat}_j(i) = \begin{cases} 1 \text{ if parcels within the treatment area} \\ 0 \text{ otherwise} \end{cases} \\ & \operatorname{Post}_i = \begin{cases} 1 \text{ if the parcel was sold afer fire} \\ 0 \text{ otherwise} \end{cases} \end{aligned}$$

• Y_i is the land price per acre, β_3 is the treatment effect, X_i is the covariates (soil class, topographic and climate variables), $\mu_{j(i)}$ and $\gamma_{t(i)}$ are the fire and sales year fixed-effects, and ε_i is the error term

How wildfires affect the value of agricultural land

	(1)	(2)	(3)	(4)	(5)
		All Parcels	CDL restriction		
Treatment effect	-0.247*** (0.092)	-0.398** (0.157)	-0.282*** (0.105)	-0.296*** (0.107)	-0.254*** (0.089)
Observations	3,866	3,866	3,866	3,619	2,985
R-squared	0.395	0.512	0.645	0.651	0.671
Year FE	Yes	Yes	Yes	Yes	Yes
Fire FE	Yes	Yes	Yes	Yes	Yes
Reg. Weights	No	Yes	Yes	Yes	Yes
Controls	No	No	Yes	Yes	Yes
Adjusted R-squared	0.378	0.498	0.634	0.640	0.658

Notes: CDL restrictions place at least a 25% overlap with sales data for all ag parcels (4) and only pastureland or cropland (5)

Event Study Analysis

Impact of Wildfires on Land Values Over Time, 95% CI

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 の � � 11/17

Heterogeneity by fire size

	(1)	(2)	(3)	(4)
Treatment effect \times size	-0.402** (0.157)	-0.533* (0.279)	-0.437*** (0.154)	-0.534* (0.273)
Observations	3,336	3,336	3,336	3,336
R-squared	0.649	0.663	0.650	0.663
Year FE	Yes	Yes	Yes	Yes
Fire FE	Yes	Yes	Yes	Yes
Reg. Weights	No	Yes	No	Yes
Controls	Yes	Yes	Yes	Yes
Adjusted R-squared	0.636	0.651	0.637	0.651

Notes: Columns 1 and 2 include a fire size dummy, with thresholds of 17,678 (50th percentile), while Columns 3 and 4 use 20,000 acres (above the 50th percentile), respectively

How wildfires affect the value of agricultural land

	(1)	(2)	(3)	(4)	
	CDL re	striction	Zoning restriction		
Treatment effect	-0.383*** (0.137)	-0.349*** (0.111)	-0.403** (0.157)	-0.453*** (0.147)	
Observations	3,113	2,553	2,160	2,439	
R-squared	0.669	0.682	0.727	0.713	
Year FE	Yes	Yes	Yes	Yes	
Fire FE	Yes	Yes	Yes	Yes	
Reg. Weights	Yes	Yes	Yes	Yes	
Controls	Yes	Yes	Yes	Yes	
Adjusted R-squared	0.656	0.667	0.712	0.698	

Notes: Restrict the sample to parcels sold five years before and three years after the fire, and impose the CDL and Zoning restrictions

Conclusion

- We find that changes in fire specific risk led to a 25-40% reduction in farmland value (decline of \$700-1,120/acre), from the main specification
 - The empirical findings for Oregon indicate that the price of nearby land declines after wildfire occurrence

Conclusion

- We find that changes in fire specific risk led to a 25-40% reduction in farmland value (decline of \$700-1,120/acre), from the main specification
 - The empirical findings for Oregon indicate that the price of nearby land declines after wildfire occurrence
- There have been a few empirical estimations of how wildfires affect agricultural land market in Oregon as well as the western US

Conclusion

- We find that changes in fire specific risk led to a 25-40% reduction in farmland value (decline of \$700-1,120/acre), from the main specification
 - The empirical findings for Oregon indicate that the price of nearby land declines after wildfire occurrence
- There have been a few empirical estimations of how wildfires affect agricultural land market in Oregon as well as the western US
- Highlight the importance of measuring the economic costs of recent catastrophic wildfires in Oregon, as reflected in land prices

Questions or Feedback

Kenneth Annan annank@oregonstate.edu

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ = のへで 15/17

Descriptive statistics of main variables used in the analysis

Variable	Obs.	Unweighted Mean	Weighted Mean	Min	Max
Farmland price (\$/acre)	3,866	9,742	2,801	100.5	59,830
Post fire	3,866	0.516	0.508	0	1
2km fire bandwidth	3,866	0.180	0.234	0	1
% LCC 1-2	3,866	10.29	5.240	0	100
% LCC 3-4	3,866	41.74	33.04	0	100.0
% LCC 5-6	3,866	29.76	27.73	0	100
Precipitation (mm)	3,866	182.1	147.2	64.19	612.6
Temperature (°C)	3,866	15.96	15.69	10.23	18.85
Slope (degrees)	3,866	7.219	9.203	0.00137	37.57
Elevation (m)	3,864	635.0	767.9	27.39	1,949
Distance to City (km)	3,866	8.806	12.76	0.0421	85.30
Distance to road (km)	3,866	4.104	5.059	0.00643	31.88
Fire size dummy	3,866	0.499	0.518	0	1
Sale acres	3,866	155.9	-	10	7,538

Notes:All parcels within 10km and sold fives years before and after fire. Sufficient obs. for pre/post and treatment/control

Descriptive statistics of main variables used in the analysis

	Within 20km			Within 10km			
Variable	Obs.	Mean	SD	Obs.	Mean	SD	
Farmland price (\$/acre)	31,566	2,377	4,840	8,921	2,057	4,227	
Post fire	31,566	0.468	0.499	8,921	0.457	0.498	
2km fire bandwidth	31,566	0.0420	0.201	8,921	0.132	0.338	
% LCC 1-2	31,566	3.605	13.51	8,921	3.431	12.54	
% LCC 3-4	31,566	30.82	34.27	8,921	29.82	33.68	
% LCC 5-6	31,566	31.51	36.55	8,921	28.84	35.63	
Precipitation (mm)	31,566	145.6	68.96	8,921	144.4	68.68	
Temperature (°C)	31,566	15.25	1.687	8,921	15.37	1.675	
Slope (degrees)	31,566	8.552	6.754	8,921	9.119	6.604	
Elevation (m)	31,531	890.3	371.7	8,911	864.2	366.1	
Distance to City (km)	31,566	16.61	15.13	8,921	16.46	13.50	
Distance to road (km)	31,566	6.041	6.108	8,921	6.089	5.862	
Fire size dummy	31,566	0.247	0.432	8,921	0.271	0.445	

^{17/17} ^۲