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A system in transition from abundance to scarcity
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Project goals and approach

1. One goal: to reduce uncertainty. A hydro-model can narrow divergent views and foster
shared understanding of the nature of the problem and feasible solutions.

2. Approach: A systems perspective recognizing the Harney Basin as a complex, adaptive
human-natural system.

3. Hypothesis: that a systems approach can be useful and important.

4. Hypothesis: that there will be surprises in what the model reveals, including surprises for
stakeholders, policymakers, and also us (the researchers).



“Complex, adaptive social-ecological
systems”

“Systems linking people and nature, known as social-ecological systems,
are increasingly understood as complex adaptive systems. Essential
features of these systems — such as nonlinear feedbacks, strategic
interactions, individual and spatial heterogeneity, and varying time scales
— pose substantial challenges for modeling.”

... However, ignoring these characteristics can distort our picture of how
these systems work, causing policies to be less effective or even
counterproductive.”

- Levin S, Xepapadeas T, Crépin AS, Norberg J, De Zeeuw A, Folke C, Hughes T, Arrow K, Barrett S,
Daily G, Ehrlich P, et al., Social-ecological systems as complex adaptive systems: modeling and
policy implications. Environment and development economics. 2013 Apr;18(2):111-32.




Coupled Human-Natural System
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Rural residential wells (~1,100) Livestock wells (~600)
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A groundwater system in transition
from abundance to scarcity

2015 — Oregon Water Resources Department (OWRD) raised concerns
about groundwater pumping exceeding annual recharge

2016 — Basin designated an “area of concern”

2017 — Groundwater studies initiated by USGS and OWRD

2017-21 - Community efforts initiated to find common ground through
Community-based Water Planning Collaborative

2020-23 — Groundwater hydrology model completed; hydro-economic
model study initiated



Harney Basin groundwater hydrology and economic model (HEM)




Hydrologic Budget of the Harney Basin Groundwater System, Southeastern Oregon
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Agricultural production model

* Field-level decisions made to maximize profits (choice of irrigation
technology, plant/don’t plant); relatively few choices.

* A key challenge: lack of site-specific data on yields and costs, so...

* Implemented a novel approach using available site-specific data on
land values, and other secondary data on costs of production (ag
census, enterprise budgets) to infer site-specific expected profit
(hedonic land value method)



Hedonic model to estimate site-specific farm profit and yield

Bstimate farm profit using a hedonic model fitted to modeled fields

(Price/acre); = By + p1X + 1 1{sale year; =t } + az) + €

Estimation details

- Pooled cross-section of 1,605 irrigated farmland transactions in
eastern Oregon spanning 2000-2017

- T, = year dummies
- &gy = OWRD district dummies

- X includes fraction of irrigable area in irrigated land capability classes
1/2, 3, 4, and 5/6 and growing-season temperature and precipitation

- Regressions weighted by irrigable acreage



Farm profit drives irrigation decisions

Estimates reveal intuitive relationship

between soil class and land price il Lo ()
POU IRR LCC 1 and 2 % 51.38
: L (11.58)***
Qse espmgtes tg fit prices for 1,040 SO T L 3 05
fields in simulation model (8.18)**
POU IRR LCC 4 % 44.22
Convert to annual profit using 5% (9.96)***
discount rate POU IRR LCC 5 and 6 % 35.83
(9.87)%**
Mean profit = $289/ac (s.d. = $44/ac) (EHIICEANNE gy
(113.75)%**
. . Precipitation 19.75
Implies average yield of 3.02 ton/ac P (12.50)

(2017 Census of Ag -> 3.01 ton/ac)



Production decisions: irrigation technology choice

®) Estimated land value L; implies ﬁi(l_c) = rL; and Y, = i +9‘(k)

2) For agiven field i with area A, profit (k) with irrigation technology k is
nie (k) =pYiA; — [CE(K) + Co(k) + C* + CTA4;

p = hay price, Y; = expected yield, A;= acres, Cf.(k)= irrigation equipment cost, C{ (k) =irrigation

operating cost, C*= non-irrigation input cost, Cl= non-irrigation fixed cost

3) Crop and technology choice: choose combination with highest expected profit
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Declining groundwater levels raise pumping costs
and limit well yield

1. Pumping cost parameters include:
* Total dynamic head (function of lift, pressure, head loss)
* Evapotranspiration, pumping rate, energy efficiency,
* Hours of pumping, price of energy

2. Maximum well yield (acre-feet/month) declines with declining “water
column” (distance from the water level to well bottom)



Model was used to simulate 15 future scenarios

Some were based on collaborative community efforts to
identify several preferred/desired solutions. Examples:

1. Adoption of water-efficient irrigation technologies (e.g.,
low-elevation sprinkler application, LESA)
Removing some fields from production by paying farmers not to
irrigate them (i.e., CREP program funded)

Pumping restrictions only in areas where groundwater depletion is
greatest (in “cones of depression”)



Scenario #1 — Baseline

Maintains current or
recent relations:
prices, incentives, and
policies

Annual profits from groundwater irrigated agriculture (SUS millions)
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The decline in
groundwater
levels over the
30-year scenario
varies
considerably by
field.

Change in depth to groundwater (meters)
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Scenario 2 - Water Conservation Technology

* Assumes the
adoption of more
efficient irrigation
technologies across
all fields during all
years of the
simulation

The reduction in
water pumped over
the 30 years with
scenario 2 compared
to scenario 1 is 5%

Annual profits from groundwater irrigated agriculture (SUS millions)
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Table 1. Scenario descriptions and present value of farm profits over 30 years
for each scenario ($2022 M)

Present value of

Scenario Description farm profits
Scenario 1 Baseline or ‘business as usual.’ 306.0
Scenario 2~ Water conserving technology required (LESA and LEPA 293.9

allowed). '
Scenario 3a  Land idling #1- on fields with lowest profit per unit of water, 205.4
pumping reduced 80% by year 3. ’
Scenario 3b  Land 1dling #2 — fields with lowest profit per unit of water 176.8
reduce pumping to zero by year 3. ‘
Scenario 3¢ Land idling #3 — on fields with lowest profit per unit of water 47
pumping reduced 50% by year 3. ’
Scenario 4a  Incentive-based #1 — pumping cost raised to $1/kwh by year 3. 179.6
Scenario 4b  Incentive-based #2 — cost of pumping raised to $0.80/kwh by 2131
year 3. '
Scenario 4¢  Incentive-based #3 — cost of pumping raised to $1.20/kwh by 133.7

year 3.



Figure 7. Cumulative number of dry (non-irrigation) wells (panel A)
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Cubic meters per year (thousands)
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Decline in groundwater irrigation profits by year 30 ($US million/yr)
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Insights about groundwater and its use in the Harney
Basin

1. Lowland areas of the basin (indeed all areas) are hydrologically
connected, limiting the efficacy of regulations targeting only some
portions of the basin.

2. Unsustainable rates of pumping were reached much sooner than
previously understood (by more than 20 years).

3. Although current pumping rates gradually raise costs and reduce well
yields, current pumping rates offer the highest aggregate economic
returns to irrigators for the foreseeable future.



Insights about groundwater policies and management

Community views and expectations about the effectiveness of many
options were overly optimistic.

Stabilizing the groundwater system will come at a high cost to
current rates of groundwater irrigated farming.

[Repeated] Unsustainable rates of pumping were reached much
sooner than previously understood (by more than 20 years).

Incentive-based policies showed small advantages over regulatory
polices, based on the field-level heterogeneity reflected in the
model.

A standard economics approach would have likely overlooked the
linkages to and impacts on residential and livestock wells, and
environmental flows.



Insights about institutional design for managing groundwater

The transition from abundant to scarce groundwater can occur long
before it is recognized.

Adaptive management needs the capacity for timely responses, and
the ability to correct for overallocation.

One recognized approach calls for: a) capping the total resource use,
b) allocating rights to users, and c) defining rules to adjust the cap or
reallocate in response to changing conditions (Holley et al., 2020).

Oregon’s water law and management rules fail on the third element.



1)

2)

3)

4)

How do rigid water law institutions make timely adaptivity impossible:

The prior appropriations water law, the seniority system, cannot work if a) you must
prove interference from a well with junior water rights, and b) managers have no
alternative way to limit permitted pumping rates.

Attempts to revoke or reduce junior groundwater rights have been stopped by legal
challenges — citing a lack of due process or proof of interference.

Current situation in Harney: a sluggish, ongoing negotiation process with OWRD and
(mainly) irrigators, converging on a plan to transition toward stable groundwater
levels starting in 2030 and aiming to stabilize groundwater in 2060.

An analogy might be an ocean fishery where managers are only able to increase the
permitted catch but never reduce it — except after 10 years of delays, and then a
30-year transition plan to stabilize fish stock.



V.

What researchers learned

A traditional groundwater-and-irrigator model likely would have overlooked the
externalities impacting residential and livestock wells, environmental flows and
related recreation and tourism.

Standard economic analysis would likely have focused on irrigation and
alternative policy options.

But the study drew our attention to this transition from abundance to scarcity,
with lags in the hydrology, information, and especially in the institutional
response.

The model helped us recognize that the institutional dynamics (or lack thereof)
was the most important insight from the research. The failure of the institutions
to have a mechanism to be “adaptive” due to rigid water law institutions.
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