

Assessing the Benefits of Irrigation Modernization

Abigail King

Economist

Pacific Northwest National Laboratory Jed Jorgensen, Sarah Barrows, Sadie Bender, Kirten Brewer, Brittany Davis, Craig Reiley, Shahnawaz Siddiqui

Idaho national Laboratory

Kara Cafferty, Camilo Bastidas Pacheco, U.S. DEPARTMENT BATTELLE Tyler Philips

PNNL is operated by Battelle for the U.S. Department of Energy

Background

In the Western U.S., the irrigation water delivery infrastructure critical to food production is still largely managed using century-old equipment and designs.

Modernization of this water conveyance infrastructure, such as piping of earthen canals, is known to improve water availability and water quality for farmers, while saving energy.

There are sparse data on irrigation infrastructure characteristics to estimate the scale of the costs and benefits associated with accelerating modernization.

This analysis estimates a variety of previously unquantified metrics related to irrigation water delivery infrastructure in the Western U.S. to support nationwide modernization planning, including the potential economic benefits from construction activities and increased water available to agriculture.

Background: Economic Value of Food Production

- Irrigation infrastructure is critical to food production
 - **75%** of the nation's irrigated acres concentrated in the West
 - Irrigated agriculture accounts for half of US crop revenues
- Farming is responsible for nearly \$203 billion in U.S. GDP and 2.6 million jobs (USDA) ERS 2024)
 - A total GDP contribution of roughly \$1.5 trillion and over 22 million full and part-time jobs across agricultural and food sectors
- ~20 percent of U.S. agricultural production is for the export market, making up 7 percent of all exports (U.S. International Trade Commission 2024)
- Drought costs the U.S. over **\$6 billion a year** (NIDIS n.d.)
- Irrigation modernization can reduce seepage and evaporative losses, therefore increasing the reliability of water deliveries to agricultural producers
- Improved water delivery reliability during times of drought may help reduce or avoid crop losses, potentially improving outcomes for jobs and economic productivity

Study Overview

- Study focuses on the 17 Bureau of Reclamation States
- Assess the impact of the current rate of modernization
- Consider accelerated modernization paces (x2 and x3 current)
- The current and accelerated modernization pace scenarios are applied to various metrics*
 - Water savings from avoided seepage or evaporation
 - Energy savings
 - Changes in food production due to increased crop water availability because of water conservation achieved through irrigation infrastructure modernization
 - Economic impacts from construction activities

*Assumptions limit the absolute accuracy of our calculations but allow for reasonable estimates that enable consideration of the challenges and opportunities associated with modernizing irrigation water delivery infrastructure.

Unlined - water travels along canals of exposed dirt

Irrigation Conveyance **Overview**

Lined - canals are layered with concrete

Piped - water travels via pipeline infrastructure

Key findings that set up our economic analysis

- Across the Western United States there is an estimated 147,700 miles of canal and pipeline infrastructure for irrigation conveyance
 - 64% unlined (95,100 miles)
 - 27% lined (40,200 miles)
 - 8% piped (12,400 miles)
 - ~570 miles of canals are newly piped or lined each year – on pace for existing canals to be completely modernized in 167 years!
- ~38-50 million acre-feet of water is diverted for agriculture in the West each year
 - ~10-13 million acre-feet is lost due to seepage and evaporation
 - ~138,000 acre-feet of water is conserved annually through modernization

Key Economic Findings: Construction Impacts

- Irrigation modernization projects create strong economic benefits.
 - Each dollar spent on modernization adds an additional dollar in value to the regional economy through indirect and induced economic impacts.
- Modernizing all 95,000 miles of unlined canals could cost ~\$285 billion.
- Based on data from recent years, approximately **\$1.15 billion** is spent annually on modernization projects.
 - Continuing at the present pace of modernization could cost an estimated \$22 billion through 2050 while supporting an estimated **12,800 annual jobs**.
 - Doubling the rate of piping or lining open canals could double costs while creating an estimated **25,500 annual jobs** and adding an annual **\$2.3 billion** in value to the regional economy.

Modeling: Economic Impacts of Irrigation Modernization Construction Activities

- IMPLAN (an input-output model) was used to quantify the potential impact of modernizing irrigation infrastructure on the economy in the Western U.S.
 - Construction and maintenance spending in each state was estimated using for current pace and accelerated scenarios (x2 and x3)
- Spending on irrigation modernization was modeled as an industry output event for each state
- One year of construction in each of these states was analyzed, with the assumption that subsequent years would see similar rates of construction
- IMPLAN uses regional dollar-flow data tables to calculate the direct, indirect, and induced effects and job impacts of that industry's output change on the regional economy

Economic Impacts from Irrigation Modernization Construction Activities

Assumptions:

- 50% lining
- 35% plastic piping
- 15% steel piping

Project Type	Average cost per mile (2024 \$)
Steel piping	2,453,956
Canal Lining	2,191,205
Plastic piping average	1,592,960
PVC piping	739,485
HDPE piping	2,446,435

Welding plastic pipe. Photo credit: Central Oregon Irrigation District

Economic Impacts from Irrigation Modernization Construction Activities

		Current	oace	
Impact	Employment (Jobs)	Labor Income (in millions)	Value Added (in millions)	
Direct	7,837	\$539.69	\$550.92	
Indirect	1,782	\$158.96	\$245.05	
Induced	3,149	\$190.53	\$355.94	
Total	12,768	\$889.19	\$1,151.92	
		Accelerated	oace (x2)	
Impact	Employment (Jobs)	Accelerated Labor Income (in millions)	oace (x2) Value Added (in millions)	
lmpact Direct	Employment (Jobs) 15,673	Accelerated Labor Income (in millions) \$1,079.38	Dace (x2) Value Added (in millions) \$1,101.85	
Impact Direct Indirect	Employment (Jobs) 15,673 3,565	Accelerated Labor Income (in millions) \$1,079.38 \$317.92	Dace (x2) Value Added (in millions) \$1,101.85 \$490.10	
Impact Direct Indirect Induced	Employment (Jobs) 15,673 3,565 6,298	Accelerated Labor Income (in millions) \$1,079.38 \$317.92 \$381.06	Dace (x2) Value Added (in millions) \$1,101.85 \$490.10 \$711.89	

Output (in millions) \$1,148.05 \$525.53 \$604.01 \$2,277.61

Output (in millions) \$2,296.11 \$1,051.07 \$1,208.03 \$4,555.22

Key Economic Findings: Crop Water Availability

- Modernization projects that conserve water can help to mitigate the effects of drought.
- A hypothetical example was used to contextualize the value of this conserved water: if water conserved through current irrigation modernization efforts were directed exclusively to improve alfalfa hay yields in a few representative counties in five alfalfa-producing states, production could increase in these counties by an average of 7.3 percent.
- This added productivity could result in an increase of **1,050 annual jobs** across these counties and **\$43.6 million** of added annual economic activity by 2050

Modeling: Estimated Economic Value of Crop Water Availability Impacts on Food Production

- AquaCrop, a Food and Agriculture Organization crop-water productivity (WP) model, is used to measure crop yield response to water
- Requires a set of inputs:
 - Climate, crop-type, irrigation and field management, and soil data
- Generates crop output in tons/hectare which were converted to tons/acre
- The WP metric in AquaCrop was altered to reflect changes in assumed water availability
 - The default WP metric for alfalfa is 15 g/m² (baseline scenario)
 - WP metric for the current, x2, and x3 scenarios were informed using the water conservation estimates

County
Pima
Yuma
Merced
Tulare
Gunnison
Larimer
Mesa
Ada
Canyon
Grant
Kittitas

Estimated Economic Value of Crop Water Availability Impacts on Food Production

Differe	ence Betwe	en Baseline and Cu	rrent Modernization	Scenario, IMPLAN	l An
State	County	Increased Tons/Acre (Dry)	Increased Revenue (2050 dollars in millions)	Increased Number of Jobs	То
Arizona	Pima	0.61	\$ 2.14	89	
	Yuma	0.75	\$ 19.76	109	
California	Merced	0.64	\$ 25.91	174	
	Tulare	0.58	\$ 17.83	124	
Colorado	Gunnison	0.23	\$ 3.93	31	
	Larimer	0.29	\$ 4.31	77	
	Mesa	0.33	\$ 5.13	145	
ldaho	Ada	0.38	\$ 2.15	32	
	Canyon	0.45	\$ 9.82	53	
Washington	Grant	0.38	\$ 28.76	120	
	Kittitas	0.36	\$ 6.51	96	

alysis

tal Additional Value Added (in millions)

\$.78
\$ 6.94
\$ 9.28
\$ 6.41
\$.82
\$ 1.18
\$ 1.43
\$.91
\$ 3.24
\$ 10.23
\$ 2.36

Sprinkler vs. Basin

SPRINKLER						
Baseline-CurrentBaseline-2xCurrent-2x					ent-2x	
	Employment	Value Added (in millions)	Employment	Value Added (in millions)	Employment	Value Added (in millions)
TOTAL	1050	\$ 43.61	1214	\$ 50.12	164	\$ 6.50

BASIN					
	Baseline	-Current	Basel	ine-2x	Cur
	Employment	Value Added (in millions)	Employment	Value Added (in millions)	Employment
TOTAL	1015	\$ 40.60	1183	\$ 47.33	167

Conclusion

- Our analysis illustrates the scale of the challenges and opportunities involved in modernizing the agricultural water delivery infrastructure in the Western U.S.
- Accelerating the pace of modernization could strengthen the long-term resilience of U.S. food systems while providing significant economic, energy, water, and environmental benefits.
- Doubling the pace of current irrigation modernization activities could create an estimated \$30 billion in cumulative benefits by 2050, even without accounting for the value of increased water availability, energy savings, or energy generation.

Thank you

abigail.king@pnnl.gov

Estimate of Irrigation Water Delivery Infrastructure Length in Western States

State	Total Length (miles)
Arizona	5,959
California	36,529
Colorado	16,438
Idaho	12,649
Kansas	702
Montana	12,893
Nebraska	598
Nevada	4,584
New Mexico	4,952
North Dakota	781
Oklahoma	213
Oregon	9,624
South Dakota	969
Texas	18,935
Utah	7,047
Washington	5,236
Wyoming	9,566
Total	147,676

- Estimated a total of <u>147,700</u> miles of irrigation canal and pipeline infrastructure across Western U.S.
- Quantified using GIS software based on the USGS National Hydrography Dataset -**NHDPlus High Resolution:**
 - 1. Used the NetworkNHDFlowline and NonNetworkNHDFlowline shapefiles included in the NHDPlus HR dataset with a state-boundary shapefile to create state level information
 - 2. The selected lines were intersected
 - 3. For each state, the total miles of flow lines were summed

Estimate of Existing Lining and Piping

- Estimated using USDA NASS survey-based
- Existing literature uses USDA ERS data to estimates the averages of the amount of delivery system lining broken down by organization size (Hrozencik, et al. 2021)
- Later work provides summary results from a survey of irrigation organizations that includes percentages of piped infrastructure (Hrozencik, et al. 2022)

Lining and Piping Estimates (miles)		
Unlined	95,100	
Lined	40,200	
Piped	12,400	
Total	147,700	

Estimated Annual Miles of Lining and Piping

		Total modernized miles in 2050			
State	Combined, pro-rated annual piping and lining (miles)	Current Pace	2X Current Pace	3X Current Pace	
Arizona	23	598	1,196	1,794	
California	141	3,666	7,332	10,997	
Colorado	63.4	1,650	3,299	4,949	
Idaho	48.8	1,269	2,539	3,808	
Kansas	2.8	70	141	211	
Montana	49.8	1,294	2,588	3,882	
Nebraska	2.4	60	120	180	
Nevada	17.6	460	920	1,380	
New Mexico	19.2	497	994	1,491	
North Dakota	3	78	157	235	
Oklahoma	0.8	21	43	64	
Oregon	37.2	966	1,932	2,897	
South Dakota	3.8	97	195	292	
Texas	73	1,900	3,801	5,701	
Utah	27.2	707	1,414	2,122	
Washington	20.2	525	1,051	1,576	
Wyoming	37	960	1,920	2,880	
Total miles	570	14,820	29,640	44,460	

Limited data suggests ~570 miles of canal are lined and piped each year (~285 miles each)

Analysis included data from: • WaterSMART Water and Energy Efficiency Grant (WEEG) from 2015

- through 2023
- Farmers Conservation Alliance (FCA) representing completed and scheduled piping projects for the state of Oregon between 2017 and 2026

Estimated Water Conservation Potential Associated with Lining or Piping Open Canals

Data suggests ~138,000 acre-feet of water are conserved each year based on the current pace of modernization.

Water conservation potential calculations rely on **3 inputs** calculated for each state:

- 1. Estimated % of conveyance loss at high and low levels
- **2.** Conservation achieved annually at current and accelerated (x2 and x3) scenarios
- **3.** Water availability for irrigation using high, medium, and low ranges
- Self-reported data from USDA ERS reveals 19% average (13 25% range) conveyance loss by state (Potter 2023)
 - Assumed low-end estimate \rightarrow a high-end estimate assumed to be 10% greater
- DOI performance reports were used to obtain data for annual water conservation in acre-feet from 2012 to 2021 (U.S. Department of Interior n.d.)

· Total acro foot dimented -

acre-feet applied

 ~ 100

Water Conservation Potential Associated with **Lining or Piping Open Canals**

State	Current estimated conveyance loss, high-loss scenario	Estimated total diversion, acre-feet	Estimated current conveyance losses, acre-feet	Pro-rated estimat conservation a annually, act
Arizona	24%	3,522,245	845,339	
California	23%	11,984,636	2,756,466	
Colorado	26%	2,090,384	543,500	
Idaho	30%	4,437,074	1,331,122	
Kansas	35%	60,298	21,104	
Montana	26%	1,988,789	517,085	
Nebraska	35%	770,725	269,754	
Nevada	23%	438,360	100,823	
New Mexico	24%	860,809	206,594	
North Dakota	35%	113,640	39,774	
Oklahoma	35%	85,994	30,098	
Oregon	30%	2,312,246	693,674	
South Dakota	35%	194,618	68,116	
Texas	35%	1,733,011	606,554	
Utah	24%	1,936,089	464,661	
Washington	30%	3,099,067	929,720	
Wyoming	26%	2,474,773	643,441	
	Total	38,102,759	10,067,826	

ed current
chieved
e-feet
13,177
45,425
7,614
15,289
193
7,244
2,466
1,662
3,220
364
275
7,967
623
5,545
7,243
10,678
9,015
138,000

Water Conservation Potential Associated with **Lining or Piping Open Canals**

	High Loss	(millions of acr	e-feet)	t) Low Loss (millions of acre-feet)			
Values	Average Year	Drought Year	Wet Year	Average Year	Drought Year	Wet Year	
Sum of Estimated total diversion	42.19	38.10	50.19	37.14	33.53	44.22	
Sum of Water applied	31.10	28.03	37.27	31.10	28.03	37.27	
Sum of Starting conveyance loss volume	11.09	10.06	12.91	6.04	5.49	6.94	
Sum of Total conservation achieved by 2050 at current conservation rate	3.58	3.58	3.58	3.58	3.58	3.58	
Sum of 3X Accelerated Conservation	10.76	10.76	10.76	10.76	10.76	10.76	
Sum of Water available in 2050 under current conservation rate	34.68	31.62	40.86	34.68	31.62	40.86	
Sum of Water available in 2050 under 3X Accelerated Conservation	41.13	37.49	48.04	37.14	33.53	44.13	

Estimated Energy Use and Savings Potential

- ~12,000 GWh of electricity used annually to pump off-farm surface water
 - Piping projects that create gravity pressurization could conservatively save 5,800-17,400 MWh of electricity annually, reducing costs and burden on the grid.
- Followed methodology from "The energy footprint of U.S. irrigation: A first estimate from open data" was used, with some minor exceptions noted below (Sowby and Dicataldo 2022)
- Uses state average electricity rate data instead of national electricity rate data
- 3 scenarios were created:
 - 1. Current pace
 - 2. x2 modernization
 - 3. x3 modernization
- Estimates were made using 3 ranges for the 3 modernization pace scenarios described above: 25, 50, and 75 percent energy savings per mile, for every mile piped

Geographic area	Large Organizations	Medium Organizations	Small Organizations
Eastern Rockies	9,213	880	507
High Plains	5,258	502	290
Northwestern	6,516	622	359
Pacific	9,738	930	536
Southwestern	4,254	406	234
	Total Estimate	40,244	

Geographic area	Estimated number of miles of fully piped infrastructure in small organizations	Estimated miles of piping in an average system after accounting for fully piped systems
Eastern Rockies	1,460	1,794
High Plains	833	1,024
Northwestern	1,033	1,269
Pacific	1,543	1,896
Southwestern	674	828
	Total Estimated Piped Miles	12,355

State	Baseline (g/m²)	Current (g/m²)	2x (g/m²)	3x (g/m²)
Arizona	15	16.13	16.25	16.25
California	15	16.13	16.23	16.23
Colorado	15	16.13	16.26	16.28
Idaho	15	16.13	16.26	16.36
Washington	15	16.13	16.26	16.36

Estimated Economic Value of Crop Water Availability Impacts on Food Production

SPRINKLER										
	Baseline-Current			Baseline-2x			Current-2x			
County	Employment	: Value Added (in millions)		Employment	Value (in m	Added nillions)	Employment	Value / (in mi	Value Added (in millions)	
Pima	89	\$.78	106	\$.92	16	\$.14	
Yuma	109	\$	6.94	129	\$	8.21	20	\$	1.27	
Merced	174	\$	9.28	190	\$	10.12	16	\$.84	
Tulare	124	\$	6.41	135	\$	6.99	11	\$.58	
Gunnison	31	\$.82	36	\$.97	6	\$.14	
Larimer	77	\$	1.18	91	\$	1.39	14	\$.21	
Mesa	145	\$	1.43	172	\$	1.70	27	\$.26	
Ada	32	\$.91	38	\$	1.07	6	\$.16	
Canyon	53	\$	3.24	62	\$	3.83	10	\$.58	
Grant	120	\$	10.23	142	\$	12.08	22	\$	1.85	
Kittitas	96	\$	2.36	113	\$	2.79	18	\$.43	
TOTAL	1050	\$	43.61	1214	\$	50.12	164	\$	6.50	

Estimated Economic Value of Crop Water Availability Impacts on Food Production

BASIN									
	Baseline-Current			Baseline-2x			Current-2x		
County	Employment	Value (in n	Added nillions)	Employment	Value (in m	Added nillions)	Employment	Value A (in mi	\dded illions)
Pima	89	\$.78	106	\$.92	16	\$.14
Yuma	108	\$	6.86	128	\$	8.13	20	\$	1.27
Merced	231	\$	12.30	247	\$	13.14	16	\$.84
Tulare	124	\$	6.41	135	\$	6.99	11	\$.58
Gunnison	30	\$.81	36	\$.96	6	\$.14
Larimer	77	\$	1.18	91	\$	1.39	14	\$.21
Mesa	145	\$	1.43	172	\$	1.70	27	\$.26
Ada	2	\$.04	9	\$.24	7	\$.19
Canyon	53	\$	3.27	62	\$	3.86	10	\$.58
Grant	60	\$	5.12	84	\$	7.16	24	\$	2.04
Kittitas	96	\$	2.36	113	\$	2.79	18	\$.43
TOTAL	1015	\$	40.60	1183	\$	47.33	167	\$	6.72