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Background 

• Investments in research and development (R&D) made by the federal 
government play a critical supporting role in America’s economic growth 

• The U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and 
Renewable Energy (EERE) invests in a broad range of R&D projects in 
transportation, energy efficiency, and renewable energy sources to address 
challenges and gaps in technology development

• These federal investments aim to promote new technological advances, as 
well as stimulate and enable the private sector to accelerate the transfer of 
research into commercial technologies.
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Summary of Prior Impact Evaluation Literature
• To date, DOE’s EERE has 

conducted 7 impact evaluation 
studies of R&D investment over 
various technologies

• Since 2014, these impact 
evaluation studies have followed 
DOE’s Standard Impact Evaluation 
Methodology

• This methodology requires a 
portfolio approach which selects a 
few projects from within a portfolio 
for detailed evaluation
▪ Calculates economic (and other) 

benefits compared to total portfolio 
R&D
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Limitations of Prior 
Impact Evaluations

• Established framework 
used to estimate key 
metrics such as net 
economic benefits, 
benefit to cost ratios, or 
return on investment for 
R&D investments in 
advanced energy 
technologies

• Methodologies are necessarily technology-specific 
(require a “next best technology” for a counterfactual)
▪ Requires expert judgment & ultimately a selection of the 

next best technology to compute results (non-experimental 
design)

• Portfolio approach used for cost effectiveness 
reasons can lead to limited/judgmental sampling of 
technologies

• The portfolio approach also calculates economic (and 
other) benefits compared to total portfolio R&D, which 
can result in conservative B/C ratios

• However, comparing R&D costs may not be 
equivalent to the costs a firm incurs to bring a 
technology to market, which could result in optimistic 
B/C ratios 

• Sensitive to assumptions such as expected useful life, 
discounting, and how benefits are defined and 
measured

• 4 of the 7 studies are greater than 10 years old and all 
7 studies are greater than 5 years old
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Objective

• We propose an impact evaluation framework to assess how EERE’s regular 
financial assistance awards (SBIR, STTR, and other investments) drive 
innovation, grow small business, and support regional and national economic 
growth 
▪ Our impact evaluation framework will consider best practices and needed 

improvements from prior EERE impact evaluations 
▪ Our framework is a quasi-experimental econometric design leveraging techniques from 

the program evaluation literature to determine the causal effect of EERE’s awards
▪ Our framework leverages PNNL’s vast EERE technology tracking data as well as 

fundamental financial and market data from proprietary databases. 
✔ A data driven approach to impact evaluation
✔ Our intention is to provide a holistic assessment of financial assistance awards on 

firm innovation, growth, and other measures

6



Impact Evaluation: An Econometrics 
Point-of-View

• In econometric analysis, impact evaluation falls under the umbrella 
of program evaluation
▪ Concerned with the estimation of causal effects of interventions
▪ Interventions referred to as “treatments”
▪ The intervention in our impact evaluation framework is the DOE EERE’s 

federal investments in R&D (regular financial awards SBIR, STTR, and 
other investments)

• Why use econometrics?
▪ Rigorous, data-driven approach to understanding the effects of policies 

and interventions. Can estimate the causal impact of an intervention, 
controlling for other factors that might also influence the outcome.
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Impact Evaluation: Difference-in-Differences

• Quasi-experimental 
method

• Assesses the impact 
of an intervention by 
measuring the 
change in outcome 
across comparison 
groups between a 
pre- and post- 
intervention 
(treatment) period

• Requires an 
assumption of 
parallel trends
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Challenge: How to Choose the Right Control 
Group?

• Challenge: We don’t observe the potential outcome of a firm’s R&D impact 
(innovation, growth, etc.) had they not received the award

9

See Imbens and Wooldridge (2009) or Abadie and Cattaneo (2018) for surveys of the literature

Construct a 
control group from 
non-awarded firms 
to estimate this 
unobserved 
potential outcome



• Can use matching methods: well matched treatment and control samples can 
reduce bias

• Can also use instrumental variable approaches 

Challenge: Treatment is Not Random

• The U.S. Department of Energy selects 
candidates based on merit
▪ It is plausible that even without funding, 

firms that were awarded could be more 
successful than other firms
▪ In econometrics this is selection bias or 

“selection into treatment”
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Try to replicate a “randomized experiment” (as close as possible) 
by choosing treatment and control groups that have similar 
covariate distributions
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Challenge: Treatment is not Random
• Identification of causal effects using matching methods:

▪ Propensity to receive treatment

11

Unmatched Matched



Challenge: Treatment Spillovers

• Key identifying assumption for causal inference – assumes that treatment 
received by one firm does not affect outcomes for another firm
▪ Stable Unit Treatment Value Assumption (SUTVA)

• Award funding could have these types of general equilibrium effects, if, for 
example, technological innovation has “spillover effects”
▪ Example: Herd immunity from vaccines
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• Potentially, redefine the unit of interest, i.e., an industry 
instead of a firm

• Or, can model the interactions directly, i.e. model treatment 
spillovers



Challenge: Dynamic Treatment Effects

• Treatment effects may change over time, for example, award funding may 
have more impact in later years than award year

• To analyze this impact, we can use several methods which analyze both 
staggered treatment and treatment over time:
▪ Method: limit the set of effective comparison units to “clean controls” that were not 

previously treated or by controlling for dynamic treatment effects 
✔ Cengiz et al. (2019) build a new dataset for each treated cohort containing only not-yet treated 

controls, and stack them into a larger dataset for regression analysis 
✔ Callaway and Sant’Anna (2019) construct weighted averages of all valid 2X2 treated vs. untreated 

comparisons 
✔ Wooldridge (2021) suggests an OLS regression that flexibly controls for dynamic treatment effects 

by treated cohort, which produces results similar to Callaway and Sant’Anna, with smaller standard 
errors 
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Impact Evaluation Next Steps: Data Collection

• Potential outcome variables of interest: subsequent revenue and employment, 
follow-on investment, patents and citations, survival or M&A

• Matching variables of interest: firm characteristics including firm industry, firm 
age, employment size, sales and asset histories, locational variables, 
potentially pre-treatment outcomes
▪ Next steps: Our team recently received the data and can now do a deeper dive on 

firms that received an award to understand potential award decisions, leveraging 
PNNL’s unique insights from tech tracking where possible 
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Impact Evaluation Next Steps: Perform Our 
Comprehensive Approach to Impact Evaluation

• We will identify and construct a control group of firms that were not selected 
for a financial assistance award

• We will pre-process the data with matching on covariates (firm characteristics) 
that are important to applying for a financial award and may influence 
outcomes

• We will then estimate the treatment effect (impact) of financial assistance 
awards using difference-in-difference estimators on the matched data
▪ Can include newer methods to treat dynamic treatment effects as well staggered 

treatment timing

• Consider robustness to selection bias, treatment spillovers, etc.
• Consider other methods
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Combining designs helps to replicate the experimental outcome (i.e., regression 
methods on a balanced sample reduces bias, Imbens and Wooldridge, 2009)



Thank you
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Appendix: Additional Econometric Methods

• Instrumental variables approach to address selection bias
▪ Returns to education and returns to training programs could provide some insight into 

potential instruments

• Regression discontinuity
▪ Models treatment effect based on rule variable with a cutoff. We require use the DoE 

scoring of the projects (currently a data limitation). The model fits a function (linear, 
polynomial etc.) to the rule variable, and estimates the discrete change in a function 
that happens at the cutoff
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