

Data Center Energy Growth

Click Bait or Cause for Concern

Robert E. Young COO Digital Iron Network, Managing Director Economists.com

Data Center Energy Use

Agenda

- □ Top 10 List
- US Data Center Landscape in Electric Load Growth
- Data Center Energy Use
- Data Center Energy Efficiency
- Server Rack Density and AI Compute
- Nvidia Chips
- D Policy Issues
- I Floating Point Precision
- AI Compute Forecasts

Data Center Energy Use

Top Ten Data Center Companies

Rank	Company	Est. Capacity (MW)
1	Amazon Web Services	10,000
2	Microsoft Azure	8,000
3	Google Cloud	7,000
4	Meta Platforms	6,000
5	Equinix	2,000
6	Digital Realty	2,000
7	NTT Global D.C.	1,500
8	CyrusOne	1,000
9	CoreWeave	1,000
10	Flexential	500

Digital Iron Network

Data Center Energy Use

National Landscape

- □ US Electricity growth has returned
 - \sim 2025 electricity sales expected to increase by 2%, or 83 TWH
 - ☞ 83 TWH = 83,000,000 kWh
- Data center are largest driver of growth
 - Share of US electricity will rise from about 4% to 8-12% of total
 - Expected to add another 43 TWH by 2030

Data Center Energy Use

The Long Pause is Over: Electricity Sales Are Growing

U.S. Electricity Consumption (1990-2026) TWH (Source: EIA STEO May 2025)

Digital Iron Network

May 21, 2025

-5-

Sources of Energy Use

- Data center energy use is driven by three main hardware categories and varies by:
 - R Age
 - Configuration
 - Image: Type and function
- Breakdown of Energy Consumption
 - IT Equipment (40%−50%)
 - Servers Perform computation and processing
 - \bowtie Storage HDDs and SSDs for data retention
 - Network Switches, routers, and connectivity hardware

Data Center Energy Use

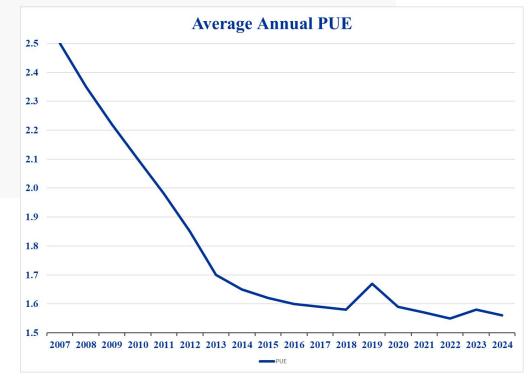
Sources of Energy Use (cont'd)

- □ Cooling Systems (30%–40%)
 - Maintain optimal temperatures
 - Shift from HVAC to specialized cooling technologies
- □ Auxiliary Components (10%–30%)
 - IN UPS (uninterruptible power supplies)
 - Security systems
 - Lighting and other infrastructure
 - Electric losses

Data Center Energy Use

Energy Efficiency

Energy Efficiency Matters


- Gauges how effectively electricity is used
- Identifies trends and performance gaps
- Drives improvement and optimization
- Is Supports long-term operational strategy
- Key Metric is Power Use Effectiveness (PUE)
 - PUE = <u>Total Facility Energy (kWh)</u> IT Energy (kWh)
 - Provides a standardized way to track data center efficiency over time
 - A lower PUE value indicates greater efficiency, with the theoretical minimum PUE being 1.0.

Data Center Energy Use

Energy Efficiency

Trends in PUE

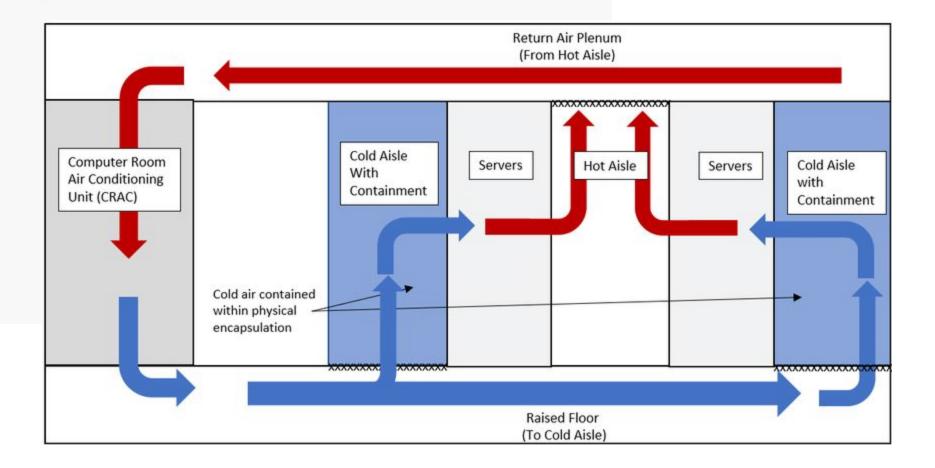
Declined rapidly from 2007 through 2018, then plateaued as the ratio approached 1.5

Digital Iron Network

Data Center Energy Use

Energy Efficiency

Improvements in PUE


- While similar from the outside, internal data center designs are not standardized
- Legacy data centers are difficult to modify and cost prohibitive
- Cooling is the key area to improve PUE
 - Hot/cold aisle containment
 - Prevents air mixing and improves cooling efficiency
 - Leverage outside air during suitable conditions
 - Liquid Cooling for AI Compute
- Utility Conservation 101

Cold Aisle Containment

- Traditional data centers used room-based cooling.
 - Inefficient airflow, with cold and hot air mixing wasted energy
 Increased rack densities made room cooling unsustainable
- CAC was developed to as a targeted solution to improve cooling efficiency and reduce operating costs to improve PUE
 - Hot/cold aisle containment
 - Prevents air mixing and improves cooling efficiency
 - Leverage outside air during suitable conditions

Data Center Energy Use


Energy Efficiency – Cold Aisle Containment

Digital Iron Network

Data Center Energy Use

Energy Efficiency – Cold Aisle Containment

Digital Iron Network

Direct Current Supply

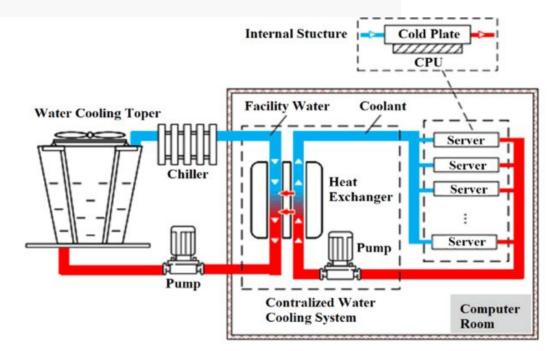
- □ Electric grids supply alternating current (AC) to customers
- □ Server racks and AI compute run on Direct Current (DC)
 - About 5-10% of data center energy use is AC/DC losses
- Infineon and Nvidia will develop direct current delivery systems

AC/DC Loss Percentages						
Source	Efficiency	Loss				
Server PSUs	90–96%	4-10%				
UPS systems	92–95%	5-8%				
PDUs	98–99%	1-2%				
Total		10%				

Digital Iron Network

Data Center Energy Use

Server Rack Density and AI Compute


Rack Density and AI Compute

- Traditional rack densities (pre-2015)
 - r Typically ranged from 3−6 kW per rack
 - Designed for general-purpose IT workloads (web, storage, email)
- □ Rise of High-Performance Computing (2016-2020)
 - Image: Densities increased to 8−15 kW per rack
 - Driven by cloud, analytics, and virtualization
- □ AI/ML acceleration era (2020–present)
 - AI workloads require GPUs and custom accelerators (e.g., TPUs)
 - $\mathbbms}$ Rack densities now commonly 20–40 kW, and often exceed 50 kW

Data Center Energy Use

Rack Density and AI Compute

- Ultra-dense AI racks emerging
 - Leading AI systems (e.g., Nvidia DGX, Meta Grand Teton) reach 60–100 kW per rack
 - Require liquid or immersion cooling

Digital Iron Network

Nvidia Chips – AI Compute Workhorse

- \square Nvidia dominant position in AI compute ~ 92%
- Early Investment in CUDA (2006) allowed use of sing units (GPU)
- Optimized for parallel processing matrix heavy AI workloads like LLMs
- Strong developer ecosystem and software stack
- Continuous chip innovation

Data Center Energy Use

Nvidia Chips – AI Compute Workhorse

Nvidia DGX Power and Performance Metrics								
Nvidia Model	Year	Cost	Pflops (FP8)	\$/Pflop	kW	Pflop/kW		
DGX-1	2016	\$129,000	1	\$129,000	3.5	0.29		
DGX-2	2018	\$399,000	2	\$199,500	10	0.20		
DGX A100	2020	\$399,000	5	\$79,800	6.5	0.77		
DGX H100	2022	\$200,000	32	\$6,250	10.20	3.14		
DGX H200	2023	\$200,000	32	\$6,250	10.20	3.14		
DGX B100	2023	\$250,000	56	\$4,464	14.3	3.92		
DGX B200	2024	\$350,000	72	\$4,861	14.3	5.03		
GB200 NVL72	2025	\$3,000,000	720	\$4,167	120	6.00		
GB300 NVL72	2026	\$3,700,000	756	\$4,894	140	5.40		
Ruben NVL576	2027	??	5,000	??	600	8.33		

Nvidia Chips – What is FP Precision

- Floating point precision refers to how many bits are used to represent numbers in calculations
 - \implies FP128 128 bits or 34 digits to FP4 4 bits or 2 digits
- □ More bits = higher precision, accurate calculation
- □ Fewer bits = faster compute, a lot of rounding
- Important because AI models tolerate lower precision
 - FP4 allows faster compute, less power, lower memory
 - FP128 for fluid dynamics, weather modeling, moon launch

Nvidia Chips – Move to FP4

- Massive Gains in Performance & Efficiency
- Model Quantization algorithms allow LLMs and vision models to retain accuracy even when quantized from FP16 or INT8 to FP4.
- Reduced memory bandwidth
- □ Higher compute density 2x more on same chip area
- □ Ideal for inference workloads After a model is trained
 - Image recognition, recommendations, autopilot

Nvidia Chips – Move to FP4

- Robert's Rules for AI Don't do math on Chatbots
- □ Question to ChatGPT: What is 6,265,108/665,223?
- □ Answer: ≈ 9.42
- □ FYI Precision in Excel is FP64, or 15 significant digits

Policy Issues

- □ Generally, utilities can meet need for new generation capacity
- Concern over grid reliability & capacity
 - Is Hyperscale data centers demand 100−300+ MW per site
 - Stress on local and regional grids (e.g., VA, OR, IE)
 - Accelerates need for long-range grid planning reform
- Interconnection Delays
 - Lengthy interconnection queues delaying data center deployment
 - Utilities and ISOs overwhelmed by high-volume load requests
 - Calls for streamlined grid access policies

Digital Iron Network

Data Center Energy Use

- Grid Connection challenges
 - CenterPoint Energy, TX connection queue increased from 1GW to 8GW in less than a year
 - Image: Wirginia connection requests can take 7 years
 - Mirrors huge queues and long delays for solar and wind interconnections
- □ Larger data centers operators turning to onsite generation
 - Google, Microsoft, Amazon, & Meta interest small nuclear reactors
 - Amazon built near Susquehanna, PA nuclear plant for direct connect

- □ Grid Connection challenges –AI to the Rescue
- Dec 2023 PJM Interconnection queue was 2,600 GW in Dec 2023
 - Average 40-month delay
- □ Google AI worked with PJM to:
 - Reviews
 - Integrate siloed data bases
 - Re Accelerate project approvals
- □ Outcome: Cleared 72 GW as of May 2025

- Emissions & Clean Energy Goals
 - Risk of increasing fossil fuel generation if clean firm supply is lacking
 - Conflict with state climate laws and decarbonization mandates
 - Push for 24/7 carbon-free energy standards (e.g., Google, Microsoft)
- D Planning & Siting Challenges
 - NIMBY resistance growing in residential or agricultural zones
 - Lack of coordination between land-use and energy planning
 - Need for electric transmission planning reform

- Ratepayer Cost Allocation
 - Transmission and substation upgrades often socialized
 - Potential for cross-subsidization by residential ratepayers
 - Consider cost-of-service tariffs, impact fees, or reservation pricing
- Regulatory Oversight Gaps
- Many data centers operate outside PUC jurisdiction
- Lack of centralized oversight for non-utility large loads
- Emerging need for data center load forecasting

AI Compute Forecast

- □ Without AI compute, data center energy growth is manageable
- □ The key driver is AI compute electricity use
- □ What is known is energy use per Nvidia GPU
- Nvidia does not release sales of GPUs and servers
 - But slips happen
- Nvidia Nov 2024 Earnings Summary page 5 said H200 "NVIDIA H200 sales increased significantly to double-digit billions since launch, Aug 2024
- Divide \$10 billion by \$32k cost per H200, so min of 312,550 sold in 3 months

Data Center Energy Growth

Thank you for your time and attention!

Robert E. Young COO Digital Iron Network Managing Director Economists.com

